Sulfate addition increases methylmercury production in an experimental wetland.

نویسندگان

  • Jeff D Jeremiason
  • Daniel R Engstrom
  • Edward B Swain
  • Edward A Nater
  • Brian M Johnson
  • James E Almendinger
  • Bruce A Monson
  • Randy K Kolka
چکیده

Atmospheric mercury is the dominant Hg source to fish in northern Minnesota and elsewhere. However, atmospherically derived Hg must be methylated prior to accumulating in fish. Sulfate-reducing bacteria are thought to be the primary methylators of Hg in the environment. Previous laboratory and field mesocosm studies have demonstrated an increase in methylmercury (MeHg) levels in sediment and peatland porewaters following additions of sulfate. In the current ecosystem-scale study, sulfate was added to half of an experimental wetland at the Marcell Experimental Forest located in northeastern Minnesota, increasing annual sulfate load by approximately four times relative to the control half of the wetland. Sulfate was added on four separate occasions during 2002 and delivered via a sprinkler system constructed on the southeast half (1.0 ha) of the S6 experimental wetland. MeHg levels were monitored in porewater and in outflow from the wetland. Prior to the first sulfate addition, MeHg concentrations (filtered, 0.7 microm) were not statistically different between the control (0.47 +/- 0.10 ng L(-1), n = 12; mean +/- one standard error) and experimental 0.52 +/- 0.05 ng L(-1), n = 18) halves. Following the first addition in May 2002, MeHg porewater concentrations increased to 1.63 +/- 0.27 ng L(-1) two weeks after the addition, a 3-fold increase. Subsequent additions in July and September 2002 did not raise porewater MeHg, but the applied sulfate was not observed in porewaters 24 h after addition. MeHg concentrations in outflow from the wetland also increased leading to an estimated 2.4x increase of MeHg flux from the wetland. Our results demonstrate enhanced methylation and increased MeHg concentrations within the wetland and in outflow from the wetland suggesting that decreasing sulfate deposition rates would lower MeHg export from wetlands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylmercury formation in a wetland mesocosm amended with sulfate.

This study used an experimental model to evaluate methylmercury accumulation when the soil of a constructed wetland is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce wastestream metals and metal-related toxicity. The soil was varied during construction to provide a control and two sulfate treatments which were equally efficient at overall mer...

متن کامل

Mercury in Fish from a Sulfate-Amended Wetland Mesocosm

1 This study used an experimental model of a constructed wetland to evaluate the risk of 2 mercury methylation when the soil is amended with sulfate. The model was planted with 3 Schoenoplectus californicus, and the sediments were varied during construction to 4 provide a control and two levels of sulfate treatment. This allowed characterization of 5 sulfate’s effect on mercury bioaccumulation ...

متن کامل

Tracing sources of sulfur in the Florida Everglades.

We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as delta34S in parts per thousand [/1000] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediate...

متن کامل

Are methylmercury concentrations in the wetlands of Kejimkujik National Park, Nova Scotia, Canada, dependent on geology?

In the relatively pristine ecosystem in Kejimkujik Park, Nova Scotia, methylmercury (MeHg) concentrations in loons, Gavia immer, are among the highest recorded anywhere in the world. This study investigated the influence of bedrock lithology on MeHg concentrations in wetlands. Twenty-five different wetland field sites were sampled over four different bedrock lithologies; Kejimkujik monzogranite...

متن کامل

Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.

Methylmercury (MeHg), dissolved organic carbon (DOC), and sulfate (SO(4)(=)) relationships were investigated in the mining-influenced St. Louis River watershed in northeast Minnesota. Fewer wetlands and higher SO(4)(=) in the mining region lead to generally lower availability and solubility of DOC in mining streams compared to non-mining streams. MeHg concentrations, however, are similarly low ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 40 12  شماره 

صفحات  -

تاریخ انتشار 2006